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Lecture Two: Embedded ARM Microcontrollers 

4.6) Arithmetic Operations 
 It is important to remember that arithmetic operations (addition, subtraction, multiplication, and 

division) have constraints when performed with finite precision on a processor. An overflow error 

occurs when the result of an arithmetic operation cannot fit into the finite precision of the register 

into which the result is to be stored. For example, consider an 8-bit unsigned number system, where 

the numbers can range from 0 to 255. If we add two numbers together the result can range from 0 

to 510, which is a 9-bit unsigned number. If we subtract two 8-bit unsigned numbers the result can 

range from -255 to +255, which is a 9-bit signed number.  

The overflow bit, V, is set after a signed addition or subtraction when the result is incorrect. In the 

arithmetic operations below, the 32-bit value can be specified by the #im12 constant or generated 

by the flexible second operand, <op2> . When Rd is absent, the result is placed back in Rn . 

ADD{S}{cond} {Rd,} Rn, <op2> ;Rd = Rn + op2 

ADD{S}{cond} {Rd,} Rn, #im12 ;Rd = Rn + im12 

SUB{S}{cond} {Rd,} Rn, <op2> ;Rd = Rn - op2 

SUB{S}{cond} {Rd,} Rn, #im12 ;Rd = Rn - im12 

RSB{S}{cond} {Rd,} Rn, <op2> ;Rd = op2 - Rn 

RSB{S}{cond} {Rd,} Rn, #im12 ;Rd = im12 - Rn 

CMP{cond} Rn, <op2> ;Rn - op2 

CMN{cond} Rn, <op2> ;Rn - (-op2) 

The compare instructions CMP and CMN do not save the result of the subtraction or addition but 

always set the condition code. The compare instructions are used to create conditional execution, 

such as if-then, for loops, and while loops. The compiler may use RSB or CMN to optimize 

execution speed. If the optional S suffix is present, addition and subtraction set the condition code 

bits as shown in Table 2.7. The addition and subtraction instructions work for both signed and 

unsigned values. As designers, we must know in advance whether we have signed or unsigned 

numbers. The computer cannot tell from the binary which type it is, so it sets both C and V. Our 

job as programmers is to look at the C bit if the values are unsigned and look at the V bit if the values 

are signed. 

 
Table 2.7. Condition code bits contain the status of the previous arithmetic operation. 
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If the two inputs to an addition operation are considered as unsigned, then the C bit (carry) will be 

set if the result does not fit. In other words, after an unsigned addition, the C bit is set if the answer 

is wrong. If the two inputs to a subtraction operation are considered as unsigned, then the C bit 

(carry) will be clear if the result does not fit. If the two inputs to an addition or subtraction operation 

are considered as signed, then the V bit (overflow) will be set if the result does not fit. In other 

words, after a signed addition, the V bit is set if the answer is wrong. If the result is unsigned, the 

N=1 means the result is greater than or equal to 231. Conversely, if the result is signed, the N=1 

means the result is negative. 

Example 2.4: Write code that reads from variable N adds 10 and stores the result in variable M. 

Both variables are 32-bit. 

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we add 10, and 

lastly we store the result into M. Since the value gets larger, no overflow could occur. This solution 

ignores the overflow error. 

 

Program 2.4. Example code showing a 32-bit add. 

 

Multiplication and division occurring in computers utilize a variety of complex algorithms to 

reduce power and minimize execution time. However, to illustrate binary multiplication we will 

present a very simple 8-bit unsigned algorithm, which uses a combination of shift and addition 

operations. Let A and B be two unsigned 8-bit numbers. The goal is to make R=A•B. Simple 

calculations of 0•0=0 and 255•255=65025 illustrate the fact that the multiplication of two 8-bit 

numbers will fit into a 16-bit product. In general, an n-bit number multiplied by an m-bit number 

yields an (n+m)-bit product. First, we define one of the multiplicands in terms of its basis 

representation. 

B = 128•b7 + 64•b6 + 32•b5 + 16•b4 + 8•b3 + 4•b2 + 2•b1 + b0 

Next, we distribute multiplication over addition 

R = A•128•b7 + A•64•b6 + A•32•b5 + A•16•b4 + A•8•b3 + A•4•b2 + A•2•b1 + A•b0 
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We can simplify the equation leaving only one-bit shifts 

R = 2•(2•(2•(2•(2•(2•(2• A•b7+ A•b6)+ A•b5)+ A•b4)+ A•b3)+ A•b2)+ A•b1)+ A•b0 

The multiplication by a power of 2 is a logical shift left, and the multiplication by a binary bit (0 

or 1) is an add or no-add conditional. For an 8-bit multiply, we will use 16-bit shifts and additions, 

yielding a 16-bit product. Since the product, R, is a 16-bit unsigned number, there can be no 

overflow error in this 8 by 8 into 16-bit multiply. 

Multiply ( MUL ), multiply with accumulate( MLA ), and multiply with subtract( MLS ) use 32-

bit operands and produce a 32-bit result. These three multiply instructions only save the bottom 32 

bits of the result. They can be used for either signed or unsigned numbers, but no overflow flags 

are generated. If the Rd register is omitted, the Rn register is the destination. If the S suffix is added 

to MUL , then the Z and N bits are set according to the result. The division instructions do not set 

condition code flags and will round towards zero if the division does not evenly divide into an 

integer quotient. 

MUL{S}{cond} {Rd,} Rn, Rm ;Rd = Rn * Rm 

MLA{cond} Rd, Rn, Rm, Ra ;Rd = Ra + Rn*Rm 

MLS{cond} Rd, Rn, Rm, Ra ;Rd = Ra - Rn*Rm 

UDIV{cond} {Rd,} Rn, Rm ;Rd = Rn/Rm unsigned 

SDIV{cond} {Rd,} Rn, Rm ;Rd = Rn/Rm signed 

Example 3.6: Write code that reads from variable N multiplies by 5, adds 25, and stores the result 

in variable M. Both variables are 32-bit. 

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we multiply by 5 

and add 10, and lastly we store the result into M. Since the value gets larger, overflow could occur. 

This solution ignores the overflow error. 

 

Program 2.8. Example code showing a 32-bit multiply and addition. 
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Example 2.7: Write code to convert a variable N ranging from 0 to 1023 into a variable M, which 

ranges from 0 to 3000. Essentially compute M = 2.93255* N. Both variables are 32-bit. 

Solution: First, we perform a 32-bit read, bringing N into Register R1. Second we multiply by 

3000 and divide by 1023, and lastly we store the result into M.  

 

 

 
3.3.7. Stack 

The stack is a last-in-first-out temporary storage. To create a stack, a block of RAM is allocated 

or this temporary storage. On the ARM ® Cortex™-M processor, the stack always operates on 32-

bit data. The stack pointer (SP) points to the 32-bit data on the top of the stack. The stack grows 

downwards in memory as we push data on to it so, although we refer to the most recent item as 

the “top of the stack” it is actually the item stored at the lowest address! To push data on the stack, 

the stack pointer is first decremented by 4, and then the 32-bit information is stored at the address 

specified by SP. To pop data from the stack, the 32-bit information pointed to by SP is first 

retrieved, and then the stack pointer is incremented by 4. SP points to the last item pushed, which 

will also be the next item to be popped. The boxes in Figure 2.27 represent 32-bit storage elements 

in RAM. The grey boxes in the figure refer to actual data stored on the stack, and the white boxes 

refer to locations in memory that do not contain stack data. This figure illustrates how the stack is 

used to push the contents of Registers R0, R1, and R2 in that order. Assume Register R0 initially 

contains the value 1, R1 contains 2, and R2 contains 3. The drawing on the left shows the initial 

stack. The software executes these six instructions in this order: 
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PUSH {R0} 

PUSH {R1} 

PUSH {R2} 

POP {R3} 

POP {R4} 

POP {R5} 

 

Figure 2.27. Stack picture showing three numbers first being pushed, then three numbers being 

popped. You are allowed to draw stack pictures so that the lowest address is on the top (like this 

one) or so that lowest address is on the bottom. 

The important matter is to be clear, accurate, and consistent. The instruction PUSH {R0} saves the 

value of R0 on the stack. It first decrements SP by 4, and then it stores the contents of R0 into the 

memory location pointed to by SP. The right-most drawing shows the stack after the push occurs 

three times. The stack contains the numbers 1, 2,and 3, with 3 on top. The instruction POP{R3} 

retrieves data from the stack. It first moves the value from memory pointed to by SP into R3, and 

then it increments SP by 4. After the pop occurs three times the stack reverts to its original state 

and registers R3, R4, and R5 contain 3 2 1 respectively. We define the 32-bit word pointed to by 

SP as the top entry of the stack. If it exists, we define the 32-bit data immediately below the top, 

at SP+4, as next to top.  

3.3.8. Functions and Control Flow 

Normally the computer executes one instruction after another in a linear fashion. In particular, the 

next instruction to execute is found immediately following the current instruction. More 

specifically, we use branch instructions to deviate from this straight line path. Table 2.2 lists the 

conditional execution available on the ARM ® Cortex™-M processor. In this section, we will use 

the conditional branch instruction to implement if-then, while loop, and for-loop control structures. 

B{cond} label ;branch to label 

BX{cond} Rm ;branch indirect to location specified by Rm 

BL{cond} label ;branch to subroutine at label 
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BLX{cond} Rm ;branch to subroutine indirect specified by Rm 

Subroutines, procedures, and functions are code sequences that can be called to perform specific 

tasks. They are important conceptual tools because they allow us to develop modular software. In 

assembly language, we use the term subroutine for all subprograms whether or not they return a 

value. In this section we present a short introduction on the syntax for defining subroutines. We 

define a subroutine by giving it a name in the label field, followed by instructions, which when 

executed, perform the desired effect. The last instruction in a subroutine will be BX LR, which we 

use to return from the subroutine. 

 In Program 2.9, we define the subroutine named Change, which adds 25 to the variable Num . In 

assembly language, we will use the BL instruction to call this subroutine. At run time, the BL 

instruction will save the return address in the LR register. The return address is the location of the 

instruction immediately after the BL instruction. At the end of the subroutine, the BX LR 

instruction will retrieve the return address from the LR register, returning the program to the place 

from which the subroutine was called. More precisely, it returns to the instruction immediately 

after the instruction that performed the subroutine call. The comments specify the order of 

execution. The while-loop causes instructions 4–10 to be repeated over and over. 

In C, input parameters, if any, are passed in R0–R3. If there are more than 4 input parameters, they 

are pushed on the stack. The output parameter, if needed, is returned in R0. 

 

Program 2.9. Assembly and C versions that define a simple function.  

Decision making is an important aspect of software programming. Two values are compared and 

certain blocks of program are executed or skipped depending on the results of the comparison. In 

assembly language it is important to know the precision (e.g., 16-bit, 32-bit) and the format of the 

two values (e.g., unsigned, signed). It takes three steps to perform a comparison. We begin by 

reading the first value into a register. The second step is to compare the first value with the second 
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value. We can use either a subtract instruction (SUBS) or a compare instruction (CMP). These 

instructions set the condition code bits. The last step is a conditional branch. The available 

conditions are listed in Table 2.2. The branch will occur if the condition is true.  

Program 2.10 illustrates an if-then structure involving testing for unsigned greater than or equal 

to. It will increment Num if it is less than 25600. Since the variable is unsigned, we use an unsigned 

conditional. Furthermore, we want to execute the increment if Num is less than 25600, so we 

perform the opposite conditional branch (greater than or equal to) to skip over. 

 

Program 2.10. Software showing an if-then control structure (BHS used because it is unsigned). 

Program 2.11illustrates an if-then-else structure involving signed numbers. It will increment Num 

if it is less than 100, otherwise it will set it to -100. Since the variable is signed, we use assigned 

conditional. Again, we want to execute the increment if Num is less than 100, so we perform the 

opposite conditional branch (greater than or equal to) to skip over. 

 

Program 2.11. Software showing an if-then-else control structure (BGE used because it is signed). 

 


